MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. N06255 Nickel

AZ91E magnesium belongs to the magnesium alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 2.5 to 6.2
45
Fatigue Strength, MPa 81 to 85
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
81
Shear Strength, MPa 89 to 150
460
Tensile Strength: Ultimate (UTS), MPa 160 to 260
660
Tensile Strength: Yield (Proof), MPa 96 to 130
250

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 500
1420
Specific Heat Capacity, J/kg-K 990
450
Thermal Expansion, µm/m-K 27
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 1.7
8.5
Embodied Carbon, kg CO2/kg material 22
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 990
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
230
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
23
Strength to Weight: Axial, points 25 to 42
22
Strength to Weight: Bending, points 37 to 53
20
Thermal Shock Resistance, points 9.0 to 15
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.015
0 to 1.2
Iron (Fe), % 0 to 0.0050
6.0 to 24
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0 to 0.0010
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0