MakeItFrom.com
Menu (ESC)

Annealed AISI 316N vs. Annealed N08800 Stainless Steel

Both annealed AISI 316N and annealed N08800 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is annealed AISI 316N and the bottom bar is annealed N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
34
Fatigue Strength, MPa 230
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 420
400
Tensile Strength: Ultimate (UTS), MPa 620
600
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
490
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1440
1390
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
5.3
Embodied Energy, MJ/kg 53
76
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 27
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.1
3.0
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 16 to 18
19 to 23
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 61.9 to 71.9
39.5 to 50.7
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
30 to 35
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6