MakeItFrom.com
Menu (ESC)

Annealed SAE-AISI 8645 vs. Annealed S66286 Stainless Steel

Both annealed SAE-AISI 8645 and annealed S66286 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 57% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is annealed SAE-AISI 8645 and the bottom bar is annealed S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
40
Fatigue Strength, MPa 280
240
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Shear Strength, MPa 380
420
Tensile Strength: Ultimate (UTS), MPa 600
620
Tensile Strength: Yield (Proof), MPa 390
280

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
920
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
6.0
Embodied Energy, MJ/kg 20
87
Embodied Water, L/kg 50
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 420
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.43 to 0.48
0 to 0.080
Chromium (Cr), % 0.4 to 0.6
13.5 to 16
Iron (Fe), % 96.5 to 97.7
49.1 to 59.5
Manganese (Mn), % 0.75 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.15 to 0.25
1.0 to 1.5
Nickel (Ni), % 0.4 to 0.7
24 to 27
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5