MakeItFrom.com
Menu (ESC)

O61 C49300 Brass vs. O61 C71500 Copper-nickel

Both O61 C49300 brass and O61 C71500 copper-nickel are copper alloys. Both are furnished in the O61 (annealed) temper. They have 62% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is O61 C49300 brass and the bottom bar is O61 C71500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
140
Elongation at Break, % 18
35
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
52
Shear Strength, MPa 270
260
Tensile Strength: Ultimate (UTS), MPa 440
390
Tensile Strength: Yield (Proof), MPa 280
130

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 120
260
Melting Completion (Liquidus), °C 880
1240
Melting Onset (Solidus), °C 840
1170
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 88
28
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 17
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
41
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 3.0
5.1
Embodied Energy, MJ/kg 50
74
Embodied Water, L/kg 370
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390
64
Stiffness to Weight: Axial, points 7.2
8.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15
12
Strength to Weight: Bending, points 16
13
Thermal Diffusivity, mm2/s 29
7.7
Thermal Shock Resistance, points 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Copper (Cu), % 58 to 62
63.5 to 70.6
Iron (Fe), % 0 to 0.1
0.4 to 1.0
Lead (Pb), % 0 to 0.010
0 to 0.050
Manganese (Mn), % 0 to 0.030
0 to 1.0
Nickel (Ni), % 0 to 1.5
29 to 33
Phosphorus (P), % 0 to 0.2
0
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.5