MakeItFrom.com
Menu (ESC)

M10 C11000 Copper vs. M10 C64200 Bronze

Both M10 C11000 copper and M10 C64200 bronze are copper alloys. Both are furnished in the M10 (as forged and air cooled) condition. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is M10 C11000 copper and the bottom bar is M10 C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 40
26
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Shear Strength, MPa 160
360
Tensile Strength: Ultimate (UTS), MPa 230
560
Tensile Strength: Yield (Proof), MPa 75
260

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1070
980
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 390
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
120
Resilience: Unit (Modulus of Resilience), kJ/m3 24
300
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.1
19
Strength to Weight: Bending, points 9.3
18
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 8.4
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 99.9 to 100
88.2 to 92.2
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0
1.5 to 2.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.1
0 to 0.5