MakeItFrom.com
Menu (ESC)

M30 C11400 Copper vs. M30 C12900 Copper

Both M30 C11400 copper and M30 C12900 copper are copper alloys. Both are furnished in the M30 (as hot extruded) condition. Their average alloy composition is basically identical.

For each property being compared, the top bar is M30 C11400 copper and the bottom bar is M30 C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 50
50
Poisson's Ratio 0.34
0.34
Rockwell F Hardness 40
40
Shear Modulus, GPa 43
43
Shear Strength, MPa 150
150
Tensile Strength: Ultimate (UTS), MPa 220
220
Tensile Strength: Yield (Proof), MPa 75
75

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1030
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
98
Electrical Conductivity: Equal Weight (Specific), % IACS 100
98

Otherwise Unclassified Properties

Base Metal Price, % relative 32
32
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
86
Resilience: Unit (Modulus of Resilience), kJ/m3 24
24
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
6.8
Strength to Weight: Bending, points 9.1
9.1
Thermal Diffusivity, mm2/s 110
110
Thermal Shock Resistance, points 7.8
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Copper (Cu), % 99.84 to 99.966
99.88 to 100
Lead (Pb), % 0
0 to 0.0040
Nickel (Ni), % 0
0 to 0.050
Silver (Ag), % 0.034 to 0.060
0 to 0.054
Tellurium (Te), % 0
0 to 0.025
Residuals, % 0 to 0.1
0