MakeItFrom.com
Menu (ESC)

M20 C12500 Copper vs. M20 C52400 Bronze

Both M20 C12500 copper and M20 C52400 bronze are copper alloys. Both are furnished in the M20 (as hot rolled) condition. They have 90% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is M20 C12500 copper and the bottom bar is M20 C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 230
450

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1070
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 350
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
11
Electrical Conductivity: Equal Weight (Specific), % IACS 93
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
58
Embodied Water, L/kg 310
390

Common Calculations

Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.0
14
Strength to Weight: Bending, points 9.2
15
Thermal Diffusivity, mm2/s 100
15
Thermal Shock Resistance, points 8.0
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Copper (Cu), % 99.88 to 100
87.8 to 91
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0 to 0.0040
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0.030 to 0.35
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.3
0 to 0.5