MakeItFrom.com
Menu (ESC)

B390.0 Aluminum vs. Grade CY40 Nickel

B390.0 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B390.0 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
190
Elongation at Break, % 0.88
34
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 29
74
Tensile Strength: Ultimate (UTS), MPa 320
540
Tensile Strength: Yield (Proof), MPa 250
220

Thermal Properties

Latent Heat of Fusion, J/g 640
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 580
1350
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 88
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.3
9.1
Embodied Energy, MJ/kg 130
130
Embodied Water, L/kg 940
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
150
Resilience: Unit (Modulus of Resilience), kJ/m3 410
130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 55
3.7
Thermal Shock Resistance, points 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.7 to 79.6
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
0 to 11
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.1
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.2
0