MakeItFrom.com
Menu (ESC)

B390.0 Aluminum vs. Grade M30H Nickel

B390.0 aluminum belongs to the aluminum alloys classification, while grade M30H nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B390.0 aluminum and the bottom bar is grade M30H nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
160
Elongation at Break, % 0.88
11
Fatigue Strength, MPa 170
230
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 29
61
Tensile Strength: Ultimate (UTS), MPa 320
770
Tensile Strength: Yield (Proof), MPa 250
470

Thermal Properties

Latent Heat of Fusion, J/g 640
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 580
1250
Melting Onset (Solidus), °C 580
1200
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 88
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 7.3
7.7
Embodied Energy, MJ/kg 130
110
Embodied Water, L/kg 940
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
75
Resilience: Unit (Modulus of Resilience), kJ/m3 410
700
Stiffness to Weight: Axial, points 15
10
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 55
5.7
Thermal Shock Resistance, points 15
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.7 to 79.6
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 4.0 to 5.0
27 to 33
Iron (Fe), % 0 to 1.3
0 to 3.5
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.1
57.9 to 70.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
2.7 to 3.7
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.2
0