MakeItFrom.com
Menu (ESC)

B443.0 Aluminum vs. 7010 Aluminum

Both B443.0 aluminum and 7010 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is B443.0 aluminum and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 4.9
3.9 to 6.8
Fatigue Strength, MPa 55
160 to 190
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 110
300 to 340
Tensile Strength: Ultimate (UTS), MPa 150
520 to 590
Tensile Strength: Yield (Proof), MPa 50
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 470
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 600
480
Specific Heat Capacity, J/kg-K 900
860
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
40
Electrical Conductivity: Equal Weight (Specific), % IACS 130
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 18
1230 to 2130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
45
Strength to Weight: Axial, points 15
47 to 54
Strength to Weight: Bending, points 23
47 to 52
Thermal Diffusivity, mm2/s 61
58
Thermal Shock Resistance, points 6.8
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 95.5
87.9 to 90.6
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0 to 0.15
1.5 to 2.0
Iron (Fe), % 0 to 0.8
0 to 0.15
Magnesium (Mg), % 0 to 0.050
2.1 to 2.6
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 4.5 to 6.0
0 to 0.12
Titanium (Ti), % 0 to 0.25
0 to 0.060
Zinc (Zn), % 0 to 0.35
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0 to 0.15
0 to 0.15