MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. 7010 Aluminum

Both B535.0 aluminum and 7010 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
70
Elongation at Break, % 10
3.9 to 6.8
Fatigue Strength, MPa 62
160 to 190
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
26
Shear Strength, MPa 210
300 to 340
Tensile Strength: Ultimate (UTS), MPa 260
520 to 590
Tensile Strength: Yield (Proof), MPa 130
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 550
480
Specific Heat Capacity, J/kg-K 910
860
Thermal Conductivity, W/m-K 96
150
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
40
Electrical Conductivity: Equal Weight (Specific), % IACS 82
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 9.4
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1230 to 2130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
45
Strength to Weight: Axial, points 28
47 to 54
Strength to Weight: Bending, points 35
47 to 52
Thermal Diffusivity, mm2/s 40
58
Thermal Shock Resistance, points 11
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.7 to 93.4
87.9 to 90.6
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
1.5 to 2.0
Iron (Fe), % 0 to 0.15
0 to 0.15
Magnesium (Mg), % 6.5 to 7.5
2.1 to 2.6
Manganese (Mn), % 0 to 0.050
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.12
Titanium (Ti), % 0.1 to 0.25
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0 to 0.15
0 to 0.15