MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. EN 1.0050 Steel

B535.0 aluminum belongs to the aluminum alloys classification, while EN 1.0050 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is EN 1.0050 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
150
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 10
18
Fatigue Strength, MPa 62
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 210
330
Tensile Strength: Ultimate (UTS), MPa 260
530
Tensile Strength: Yield (Proof), MPa 130
280

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 96
53
Thermal Expansion, µm/m-K 25
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 82
7.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.7
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.4
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
81
Resilience: Unit (Modulus of Resilience), kJ/m3 130
210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 35
18
Thermal Diffusivity, mm2/s 40
14
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.7 to 93.4
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
99.876 to 100
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.055
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.055
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0