MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. EN 1.4527 Stainless Steel

B535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4527 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is EN 1.4527 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
140
Elastic (Young's, Tensile) Modulus, GPa 66
200
Elongation at Break, % 10
40
Fatigue Strength, MPa 62
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 260
480
Tensile Strength: Yield (Proof), MPa 130
190

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 25
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 9.4
5.6
Embodied Energy, MJ/kg 160
78
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
150
Resilience: Unit (Modulus of Resilience), kJ/m3 130
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 35
17
Thermal Diffusivity, mm2/s 40
4.0
Thermal Shock Resistance, points 11
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.7 to 93.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.1
3.0 to 4.0
Iron (Fe), % 0 to 0.15
37.4 to 48.5
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0