MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. N06603 Nickel

C355.0 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.7 to 3.8
28
Fatigue Strength, MPa 76 to 84
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 290 to 310
740
Tensile Strength: Yield (Proof), MPa 200 to 230
340

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 620
1340
Melting Onset (Solidus), °C 570
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
170
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 32
25
Strength to Weight: Bending, points 36 to 37
22
Thermal Diffusivity, mm2/s 60
2.9
Thermal Shock Resistance, points 13 to 14
20

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 1.0 to 1.5
0 to 0.5
Iron (Fe), % 0 to 0.2
8.0 to 11
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 4.5 to 5.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.1
0.010 to 0.1
Residuals, % 0 to 0.15
0