MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. 5019 Aluminum

Both C443.0 aluminum and 5019 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 9.0
2.2 to 18
Fatigue Strength, MPa 120
100 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 130
170 to 210
Tensile Strength: Ultimate (UTS), MPa 230
280 to 360
Tensile Strength: Yield (Proof), MPa 100
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 600
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
29
Electrical Conductivity: Equal Weight (Specific), % IACS 120
98

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.9
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 70
110 to 650
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 24
29 to 38
Strength to Weight: Bending, points 31
35 to 42
Thermal Diffusivity, mm2/s 58
52
Thermal Shock Resistance, points 10
13 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.6 to 95.5
91.5 to 95.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0 to 0.1
4.5 to 5.6
Manganese (Mn), % 0 to 0.35
0.1 to 0.6
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 4.5 to 6.0
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15