MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. 5083 Aluminum

Both C443.0 aluminum and 5083 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
75 to 110
Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 9.0
1.1 to 17
Fatigue Strength, MPa 120
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 130
170 to 220
Tensile Strength: Ultimate (UTS), MPa 230
290 to 390
Tensile Strength: Yield (Proof), MPa 100
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
29
Electrical Conductivity: Equal Weight (Specific), % IACS 120
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 70
95 to 860
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 24
29 to 40
Strength to Weight: Bending, points 31
36 to 44
Thermal Diffusivity, mm2/s 58
48
Thermal Shock Resistance, points 10
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.6 to 95.5
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 2.0
0 to 0.4
Magnesium (Mg), % 0 to 0.1
4.0 to 4.9
Manganese (Mn), % 0 to 0.35
0.4 to 1.0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 4.5 to 6.0
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0 to 0.25
0 to 0.15