MakeItFrom.com
Menu (ESC)

EN 1.0031 Steel vs. 518.0 Aluminum

EN 1.0031 steel belongs to the iron alloys classification, while 518.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0031 steel and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89
80
Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 28
5.0
Fatigue Strength, MPa 160
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
25
Shear Strength, MPa 200
200
Tensile Strength: Ultimate (UTS), MPa 310
310
Tensile Strength: Yield (Proof), MPa 210
190

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1470
620
Melting Onset (Solidus), °C 1420
560
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 53
98
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
24
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
81

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.4
9.4
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
14
Resilience: Unit (Modulus of Resilience), kJ/m3 120
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 11
32
Strength to Weight: Bending, points 13
38
Thermal Diffusivity, mm2/s 14
40
Thermal Shock Resistance, points 9.8
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
88.1 to 92.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 98.8 to 100
0 to 1.8
Magnesium (Mg), % 0
7.5 to 8.5
Manganese (Mn), % 0 to 0.7
0 to 0.35
Nickel (Ni), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.35
0 to 0.35
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.25