MakeItFrom.com
Menu (ESC)

EN 1.0031 Steel vs. C91000 Bronze

EN 1.0031 steel belongs to the iron alloys classification, while C91000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0031 steel and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 28
7.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 310
230
Tensile Strength: Yield (Proof), MPa 210
150

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1470
960
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 53
64
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.4
4.1
Embodied Energy, MJ/kg 18
67
Embodied Water, L/kg 45
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
14
Resilience: Unit (Modulus of Resilience), kJ/m3 120
100
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 11
7.5
Strength to Weight: Bending, points 13
9.7
Thermal Diffusivity, mm2/s 14
20
Thermal Shock Resistance, points 9.8
8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 98.8 to 100
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.045
0 to 0.050
Tin (Sn), % 0
14 to 16
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.6