MakeItFrom.com
Menu (ESC)

EN 1.0050 Steel vs. 357.0 Aluminum

EN 1.0050 steel belongs to the iron alloys classification, while 357.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0050 steel and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
95
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 18
3.4
Fatigue Strength, MPa 190
76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 330
200
Tensile Strength: Ultimate (UTS), MPa 530
350
Tensile Strength: Yield (Proof), MPa 280
300

Thermal Properties

Latent Heat of Fusion, J/g 250
500
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1470
620
Melting Onset (Solidus), °C 1430
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 53
150
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
39
Electrical Conductivity: Equal Weight (Specific), % IACS 7.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
11
Resilience: Unit (Modulus of Resilience), kJ/m3 210
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 19
38
Strength to Weight: Bending, points 18
43
Thermal Diffusivity, mm2/s 14
64
Thermal Shock Resistance, points 17
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.3 to 93.1
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 99.876 to 100
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0
0 to 0.030
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.055
0
Silicon (Si), % 0
6.5 to 7.5
Sulfur (S), % 0 to 0.055
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15