MakeItFrom.com
Menu (ESC)

EN 1.0213 Steel vs. C84800 Brass

EN 1.0213 steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0213 steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 25
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 320 to 430
230
Tensile Strength: Yield (Proof), MPa 220 to 330
100

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1470
950
Melting Onset (Solidus), °C 1430
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 53
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
16
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
27
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 98
34
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 300
53
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 11 to 15
7.3
Strength to Weight: Bending, points 13 to 16
9.6
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 10 to 14
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.020 to 0.060
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.060 to 0.1
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 99.245 to 99.67
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0.25 to 0.45
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7