MakeItFrom.com
Menu (ESC)

EN 1.0214 Steel vs. Grade 6 Titanium

EN 1.0214 steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0214 steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 31
11
Fatigue Strength, MPa 160 to 250
290
Poisson's Ratio 0.29
0.32
Reduction in Area, % 66 to 80
27
Shear Modulus, GPa 73
39
Shear Strength, MPa 250 to 290
530
Tensile Strength: Ultimate (UTS), MPa 330 to 460
890
Tensile Strength: Yield (Proof), MPa 210 to 360
840

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1470
1580
Melting Onset (Solidus), °C 1420
1530
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 53
7.8
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.4
30
Embodied Energy, MJ/kg 18
480
Embodied Water, L/kg 46
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34 to 130
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 340
3390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 12 to 16
55
Strength to Weight: Bending, points 14 to 17
46
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 11 to 14
65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.020 to 0.060
4.0 to 6.0
Carbon (C), % 0.080 to 0.12
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 99.17 to 99.6
0 to 0.5
Manganese (Mn), % 0.3 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4