MakeItFrom.com
Menu (ESC)

EN 1.0225 Steel vs. ASTM B817 Type I

EN 1.0225 steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0225 steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 6.7 to 24
4.0 to 13
Fatigue Strength, MPa 170 to 220
360 to 520
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 440 to 500
770 to 960
Tensile Strength: Yield (Proof), MPa 230 to 380
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
340
Melting Completion (Liquidus), °C 1460
1600
Melting Onset (Solidus), °C 1420
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 52
7.1
Thermal Expansion, µm/m-K 12
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 18
610
Embodied Water, L/kg 46
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 95
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 390
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 18
48 to 60
Strength to Weight: Bending, points 16 to 18
42 to 49
Thermal Diffusivity, mm2/s 14
2.9
Thermal Shock Resistance, points 14 to 16
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.21
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98 to 100
0 to 0.4
Manganese (Mn), % 0 to 1.4
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.35
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4