MakeItFrom.com
Menu (ESC)

EN 1.0225 Steel vs. EN 1.0644 Steel

Both EN 1.0225 steel and EN 1.0644 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0225 steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 140
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.7 to 24
17
Fatigue Strength, MPa 170 to 220
380
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 280 to 290
420
Tensile Strength: Ultimate (UTS), MPa 440 to 500
690
Tensile Strength: Yield (Proof), MPa 230 to 380
570

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
47
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 18
24
Embodied Water, L/kg 46
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 390
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 18
24
Strength to Weight: Bending, points 16 to 18
22
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 14 to 16
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0 to 0.21
0.16 to 0.22
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98 to 100
96.1 to 98.4
Manganese (Mn), % 0 to 1.4
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.35
0.1 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15