MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. CC495K Bronze

EN 1.0303 steel belongs to the iron alloys classification, while CC495K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is CC495K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84 to 120
76
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 25
7.0
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 73
37
Tensile Strength: Ultimate (UTS), MPa 290 to 410
240
Tensile Strength: Yield (Proof), MPa 200 to 320
120

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
140
Melting Completion (Liquidus), °C 1470
930
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 53
48
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
10
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 1.4
3.6
Embodied Energy, MJ/kg 18
58
Embodied Water, L/kg 46
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
14
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
68
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 10 to 15
7.3
Strength to Weight: Bending, points 12 to 16
9.4
Thermal Diffusivity, mm2/s 14
15
Thermal Shock Resistance, points 9.2 to 13
8.8

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.020 to 0.060
0
Copper (Cu), % 0
76 to 82
Iron (Fe), % 99.335 to 99.71
0 to 0.25
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0.25 to 0.4
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.1
Silicon (Si), % 0 to 0.1
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.1
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 2.0