MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. N06110 Nickel

EN 1.0303 steel belongs to the iron alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 12 to 25
53
Fatigue Strength, MPa 150 to 230
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
84
Shear Strength, MPa 220 to 260
530
Tensile Strength: Ultimate (UTS), MPa 290 to 410
730
Tensile Strength: Yield (Proof), MPa 200 to 320
330

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 400
1020
Melting Completion (Liquidus), °C 1470
1490
Melting Onset (Solidus), °C 1430
1440
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
65
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.4
11
Embodied Energy, MJ/kg 18
160
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
320
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 10 to 15
23
Strength to Weight: Bending, points 12 to 16
21
Thermal Shock Resistance, points 9.2 to 13
20

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 1.0
Carbon (C), % 0.020 to 0.060
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 99.335 to 99.71
0 to 1.0
Manganese (Mn), % 0.25 to 0.4
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.5
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0