MakeItFrom.com
Menu (ESC)

EN 1.0406 Steel vs. C10500 Copper

EN 1.0406 steel belongs to the iron alloys classification, while C10500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.0406 steel and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23
2.8 to 51
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 300
150 to 210
Tensile Strength: Ultimate (UTS), MPa 470
220 to 400
Tensile Strength: Yield (Proof), MPa 240
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 49
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
32
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 47
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 150
24 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
6.8 to 12
Strength to Weight: Bending, points 17
9.1 to 14
Thermal Diffusivity, mm2/s 13
110
Thermal Shock Resistance, points 15
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.22 to 0.29
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
99.89 to 99.966
Iron (Fe), % 97.6 to 99.38
0
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.4
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.045
0
Residuals, % 0
0 to 0.050