MakeItFrom.com
Menu (ESC)

EN 1.0451 Steel vs. EN 1.4961 Stainless Steel

Both EN 1.0451 steel and EN 1.4961 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0451 steel and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
39
Fatigue Strength, MPa 180
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 270
420
Tensile Strength: Ultimate (UTS), MPa 420
610
Tensile Strength: Yield (Proof), MPa 240
220

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
890
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
16
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
21
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.5
4.0
Embodied Energy, MJ/kg 19
57
Embodied Water, L/kg 48
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 13
4.3
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.15
0.040 to 0.1
Chromium (Cr), % 0 to 0.3
15 to 17
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.2 to 99.58
65.6 to 72.3
Manganese (Mn), % 0.4 to 1.2
0 to 1.5
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
12 to 14
Niobium (Nb), % 0 to 0.010
0.4 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.35
0.3 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0