MakeItFrom.com
Menu (ESC)

EN 1.0536 Steel vs. EN 1.4807 Stainless Steel

Both EN 1.0536 steel and EN 1.4807 stainless steel are iron alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 43% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0536 steel and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
4.5
Fatigue Strength, MPa 340
120
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 710
480
Tensile Strength: Yield (Proof), MPa 510
250

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
39
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.7
6.8
Embodied Energy, MJ/kg 24
97
Embodied Water, L/kg 49
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
18
Resilience: Unit (Modulus of Resilience), kJ/m3 690
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 0.010 to 0.050
0
Carbon (C), % 0.16 to 0.22
0.3 to 0.5
Chromium (Cr), % 0
17 to 20
Iron (Fe), % 97.2 to 98.4
36.6 to 46.7
Manganese (Mn), % 1.3 to 1.7
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0 to 0.070
1.0 to 1.8
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.1 to 0.5
1.0 to 2.5
Sulfur (S), % 0 to 0.035
0 to 0.030
Vanadium (V), % 0.080 to 0.15
0