MakeItFrom.com
Menu (ESC)

EN 1.0558 Cast Steel vs. EN 1.0535 Steel

Both EN 1.0558 cast steel and EN 1.0535 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0558 cast steel and the bottom bar is EN 1.0535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
12
Fatigue Strength, MPa 230
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 640
690
Tensile Strength: Yield (Proof), MPa 340
340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
48
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 45
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
69
Resilience: Unit (Modulus of Resilience), kJ/m3 300
310
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 20
22

Alloy Composition

Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Iron (Fe), % 99.935 to 100
97.1 to 98.9
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.045