MakeItFrom.com
Menu (ESC)

EN 1.0565 Steel vs. ASTM A372 Grade K Steel

Both EN 1.0565 steel and ASTM A372 grade K steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0565 steel and the bottom bar is ASTM A372 grade K steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
230
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
23
Fatigue Strength, MPa 260
440
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 350
490
Tensile Strength: Ultimate (UTS), MPa 550
780
Tensile Strength: Yield (Proof), MPa 360
620

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
440
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
48
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
4.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
1.8
Embodied Energy, MJ/kg 22
24
Embodied Water, L/kg 49
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 340
1010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
27
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.18
Chromium (Cr), % 0 to 0.3
1.0 to 1.8
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.2 to 99
93.4 to 96.6
Manganese (Mn), % 0.9 to 1.7
0.1 to 0.4
Molybdenum (Mo), % 0 to 0.080
0.2 to 0.6
Nickel (Ni), % 0 to 0.5
2.0 to 3.3
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.1
0