MakeItFrom.com
Menu (ESC)

EN 1.0601 Steel vs. 4032 Aluminum

EN 1.0601 steel belongs to the iron alloys classification, while 4032 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0601 steel and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
120
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 11
6.7
Fatigue Strength, MPa 220
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
28
Shear Strength, MPa 430
260
Tensile Strength: Ultimate (UTS), MPa 730
390
Tensile Strength: Yield (Proof), MPa 350
320

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
570
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 48
140
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
10
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.5
7.8
Embodied Energy, MJ/kg 19
140
Embodied Water, L/kg 47
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
25
Resilience: Unit (Modulus of Resilience), kJ/m3 330
700
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 26
41
Strength to Weight: Bending, points 23
45
Thermal Diffusivity, mm2/s 13
59
Thermal Shock Resistance, points 23
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
81.1 to 87.2
Carbon (C), % 0.57 to 0.65
0
Chromium (Cr), % 0 to 0.4
0 to 0.1
Copper (Cu), % 0
0.5 to 1.3
Iron (Fe), % 97.1 to 98.8
0 to 1.0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0.5 to 1.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.4
11 to 13.5
Sulfur (S), % 0 to 0.045
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15