MakeItFrom.com
Menu (ESC)

EN 1.1118 Cast Steel vs. C84500 Brass

EN 1.1118 cast steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1118 cast steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 21
28
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 700 to 750
240
Tensile Strength: Yield (Proof), MPa 460 to 630
97

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 51
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
28
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 48
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 130
54
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 1050
45
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25 to 27
7.7
Strength to Weight: Bending, points 22 to 23
9.8
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 22 to 24
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.2 to 0.25
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 97.3 to 98.3
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 1.5 to 1.8
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7