MakeItFrom.com
Menu (ESC)

EN 1.1127 Steel vs. EN 1.8888 Steel

Both EN 1.1127 steel and EN 1.8888 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1127 steel and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 25
16
Fatigue Strength, MPa 280 to 370
470
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 420 to 480
510
Tensile Strength: Ultimate (UTS), MPa 660 to 790
830
Tensile Strength: Yield (Proof), MPa 410 to 580
720

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.9
Embodied Energy, MJ/kg 19
26
Embodied Water, L/kg 49
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 880
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 28
29
Strength to Weight: Bending, points 22 to 24
25
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 21 to 25
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.34 to 0.42
0 to 0.2
Chromium (Cr), % 0 to 0.4
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 96.6 to 98.1
91.9 to 100
Manganese (Mn), % 1.4 to 1.7
0 to 1.7
Molybdenum (Mo), % 0 to 0.1
0 to 0.7
Nickel (Ni), % 0 to 0.4
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 0.8
Sulfur (S), % 0 to 0.035
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15