MakeItFrom.com
Menu (ESC)

EN 1.1172 Steel vs. EN AC-21100 Aluminum

EN 1.1172 steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.1172 steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 480 to 1720
340 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
670
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 51
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 46
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 17 to 61
31 to 33
Strength to Weight: Bending, points 17 to 41
36 to 37
Thermal Diffusivity, mm2/s 14
48
Thermal Shock Resistance, points 15 to 55
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0.32 to 0.39
0
Copper (Cu), % 0 to 0.25
4.2 to 5.2
Iron (Fe), % 98.2 to 99.18
0 to 0.19
Manganese (Mn), % 0.5 to 0.8
0 to 0.55
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.18
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1