MakeItFrom.com
Menu (ESC)

EN 1.3538 Steel vs. C50100 Bronze

EN 1.3538 steel belongs to the iron alloys classification, while C50100 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3538 steel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 670 to 740
270

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 440
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
230
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
55
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
55

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 21
42
Embodied Water, L/kg 56
310

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24 to 26
8.3
Strength to Weight: Bending, points 22 to 23
10
Thermal Diffusivity, mm2/s 11
66
Thermal Shock Resistance, points 20 to 22
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.7 to 2.0
0
Copper (Cu), % 0 to 0.3
98.6 to 99.49
Iron (Fe), % 96 to 97.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.8
0
Molybdenum (Mo), % 0.4 to 0.5
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0.010 to 0.050
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.8
Residuals, % 0
0 to 0.5