MakeItFrom.com
Menu (ESC)

EN 1.3543 Stainless Steel vs. 443.0 Aluminum

EN 1.3543 stainless steel belongs to the iron alloys classification, while 443.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3543 stainless steel and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
41
Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 730
150

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 22
150
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.3
8.0
Embodied Energy, MJ/kg 32
150
Embodied Water, L/kg 120
1120

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 27
16
Strength to Weight: Bending, points 24
23
Thermal Diffusivity, mm2/s 6.1
61
Thermal Shock Resistance, points 26
6.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.7 to 95.5
Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0 to 0.25
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 79.1 to 83.6
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0.4 to 0.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35