MakeItFrom.com
Menu (ESC)

EN 1.3543 Stainless Steel vs. C72700 Copper-nickel

EN 1.3543 stainless steel belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3543 stainless steel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 730
460 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1430
1100
Melting Onset (Solidus), °C 1390
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 22
54
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.3
4.0
Embodied Energy, MJ/kg 32
62
Embodied Water, L/kg 120
350

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
14 to 34
Strength to Weight: Bending, points 24
15 to 26
Thermal Diffusivity, mm2/s 6.1
16
Thermal Shock Resistance, points 26
16 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
82.1 to 86
Iron (Fe), % 79.1 to 83.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 0.4 to 0.8
0
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3