MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. S44626 Stainless Steel

Both EN 1.3553 steel and S44626 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 77
80
Tensile Strength: Ultimate (UTS), MPa 720
540

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 540
1100
Melting Completion (Liquidus), °C 1620
1440
Melting Onset (Solidus), °C 1570
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 24
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 8.5
2.9
Embodied Energy, MJ/kg 130
42
Embodied Water, L/kg 96
160

Common Calculations

PREN (Pitting Resistance) 31
30
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
26
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 6.4
4.6
Thermal Shock Resistance, points 21
18

Alloy Composition

Carbon (C), % 0.78 to 0.86
0 to 0.060
Chromium (Cr), % 3.9 to 4.3
25 to 27
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 80.7 to 83.7
68.1 to 74.1
Manganese (Mn), % 0 to 0.4
0 to 0.75
Molybdenum (Mo), % 4.7 to 5.2
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0