MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. ASTM Grade LCC Steel

Both EN 1.3963 alloy and ASTM grade LCC steel are iron alloys. They have 63% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is ASTM grade LCC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
25
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
72
Tensile Strength: Ultimate (UTS), MPa 440
570
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 66
18
Embodied Water, L/kg 110
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 15
20
Strength to Weight: Bending, points 16
20
Thermal Shock Resistance, points 110
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.050
0 to 0.25
Chromium (Cr), % 0 to 0.25
0
Iron (Fe), % 60.5 to 64.9
96.9 to 100
Manganese (Mn), % 0 to 0.5
0 to 1.2
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0.1 to 0.2
0 to 0.045
Residuals, % 0
0 to 1.0