MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. EN 1.8935 Steel

Both EN 1.3963 alloy and EN 1.8935 steel are iron alloys. They have 64% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is EN 1.8935 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
19
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 290
400
Tensile Strength: Ultimate (UTS), MPa 440
640
Tensile Strength: Yield (Proof), MPa 310
490

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.7
Embodied Energy, MJ/kg 66
24
Embodied Water, L/kg 110
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 15
23
Strength to Weight: Bending, points 16
21
Thermal Shock Resistance, points 110
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.050
0 to 0.2
Chromium (Cr), % 0 to 0.25
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 60.5 to 64.9
95.2 to 98.9
Manganese (Mn), % 0 to 0.5
1.1 to 1.7
Molybdenum (Mo), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 35 to 37
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0.1 to 0.2
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2