MakeItFrom.com
Menu (ESC)

EN 1.3975 Stainless Steel vs. 296.0 Aluminum

EN 1.3975 stainless steel belongs to the iron alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3975 stainless steel and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 27
3.2 to 7.1
Fatigue Strength, MPa 230
47 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 660
260 to 270
Tensile Strength: Yield (Proof), MPa 320
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 340
420
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1320
540
Specific Heat Capacity, J/kg-K 500
870
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.5
3.0
Embodied Carbon, kg CO2/kg material 3.3
7.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 270
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 24
24 to 25
Strength to Weight: Bending, points 22
30 to 31
Thermal Shock Resistance, points 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89 to 94
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 58.2 to 65.4
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 7.0 to 9.0
0 to 0.35
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 8.0 to 9.0
0 to 0.35
Nitrogen (N), % 0.080 to 0.18
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 3.5 to 4.5
2.0 to 3.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35