MakeItFrom.com
Menu (ESC)

EN 1.4005 Stainless Steel vs. S31060 Stainless Steel

Both EN 1.4005 stainless steel and S31060 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4005 stainless steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 13 to 21
46
Fatigue Strength, MPa 240 to 290
290
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Shear Strength, MPa 390 to 450
480
Tensile Strength: Ultimate (UTS), MPa 630 to 750
680
Tensile Strength: Yield (Proof), MPa 370 to 500
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
440
Maximum Temperature: Mechanical, °C 760
1080
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
18
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
48
Embodied Water, L/kg 100
170

Common Calculations

PREN (Pitting Resistance) 14
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
260
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 650
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23 to 27
24
Strength to Weight: Bending, points 21 to 24
22
Thermal Diffusivity, mm2/s 8.1
4.0
Thermal Shock Resistance, points 23 to 27
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.060 to 0.15
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 12 to 14
22 to 24
Iron (Fe), % 82.4 to 87.8
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 0
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0.15 to 0.35
0 to 0.030