MakeItFrom.com
Menu (ESC)

EN 1.4029 Stainless Steel vs. N07750 Nickel

EN 1.4029 stainless steel belongs to the iron alloys classification, while N07750 nickel belongs to the nickel alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4029 stainless steel and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 20
25
Fatigue Strength, MPa 270 to 400
520
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 440 to 550
770
Tensile Strength: Ultimate (UTS), MPa 700 to 930
1200
Tensile Strength: Yield (Proof), MPa 410 to 740
820

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 750
960
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 30
13
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
60
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.0
10
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 120
270
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1410
1770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 25 to 33
40
Strength to Weight: Bending, points 23 to 27
30
Thermal Diffusivity, mm2/s 8.1
3.3
Thermal Shock Resistance, points 26 to 34
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0.25 to 0.32
0 to 0.080
Chromium (Cr), % 12 to 13.5
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 82.8 to 87.6
5.0 to 9.0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0.15 to 0.25
0 to 0.010
Titanium (Ti), % 0
2.3 to 2.8