MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. 204.0 Aluminum

EN 1.4062 stainless steel belongs to the iron alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 23 to 34
5.7 to 7.8
Fatigue Strength, MPa 410 to 420
63 to 77
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 770 to 800
230 to 340
Tensile Strength: Yield (Proof), MPa 530 to 600
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 28 to 29
21 to 31
Strength to Weight: Bending, points 24 to 25
28 to 36
Thermal Diffusivity, mm2/s 4.0
46
Thermal Shock Resistance, points 21 to 22
12 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 69.3 to 77.3
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0 to 0.050
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15