MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. C38000 Brass

EN 1.4062 stainless steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23 to 34
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
39
Shear Strength, MPa 510
230
Tensile Strength: Ultimate (UTS), MPa 770 to 800
380
Tensile Strength: Yield (Proof), MPa 530 to 600
120

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1030
110
Melting Completion (Liquidus), °C 1430
800
Melting Onset (Solidus), °C 1380
760
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
46
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
50
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
74
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 29
13
Strength to Weight: Bending, points 24 to 25
14
Thermal Diffusivity, mm2/s 4.0
37
Thermal Shock Resistance, points 21 to 22
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 69.3 to 77.3
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5