MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. C49300 Brass

EN 1.4062 stainless steel belongs to the iron alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23 to 34
4.5 to 20
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 510
270 to 290
Tensile Strength: Ultimate (UTS), MPa 770 to 800
430 to 520
Tensile Strength: Yield (Proof), MPa 530 to 600
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1030
120
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1380
840
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
88
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 37
50
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 29
15 to 18
Strength to Weight: Bending, points 24 to 25
16 to 18
Thermal Diffusivity, mm2/s 4.0
29
Thermal Shock Resistance, points 21 to 22
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 69.3 to 77.3
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 0.030
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0 to 1.5
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5