MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. C83300 Brass

EN 1.4062 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 34
35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 770 to 800
220
Tensile Strength: Yield (Proof), MPa 530 to 600
69

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1030
180
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
33

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
60
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 29
6.9
Strength to Weight: Bending, points 24 to 25
9.2
Thermal Diffusivity, mm2/s 4.0
48
Thermal Shock Resistance, points 21 to 22
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 69.3 to 77.3
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7