MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. S30600 Stainless Steel

Both EN 1.4062 stainless steel and S30600 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 34
45
Fatigue Strength, MPa 410 to 420
250
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Shear Strength, MPa 510
430
Tensile Strength: Ultimate (UTS), MPa 770 to 800
610
Tensile Strength: Yield (Proof), MPa 530 to 600
270

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Corrosion, °C 440
410
Maximum Temperature: Mechanical, °C 1030
950
Melting Completion (Liquidus), °C 1430
1380
Melting Onset (Solidus), °C 1380
1330
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 7.7
7.6
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 37
51
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 27
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
220
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 29
22
Strength to Weight: Bending, points 24 to 25
21
Thermal Diffusivity, mm2/s 4.0
3.7
Thermal Shock Resistance, points 21 to 22
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.018
Chromium (Cr), % 21.5 to 24
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 69.3 to 77.3
58.9 to 65.3
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.45
0 to 0.2
Nickel (Ni), % 1.0 to 2.9
14 to 15.5
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
3.7 to 4.3
Sulfur (S), % 0 to 0.010
0 to 0.020