MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. S39277 Stainless Steel

Both EN 1.4062 stainless steel and S39277 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23 to 34
28
Fatigue Strength, MPa 410 to 420
480
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
80
Shear Strength, MPa 510
600
Tensile Strength: Ultimate (UTS), MPa 770 to 800
930
Tensile Strength: Yield (Proof), MPa 530 to 600
660

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1030
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.2
Embodied Energy, MJ/kg 37
59
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 27
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
240
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
1070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 29
33
Strength to Weight: Bending, points 24 to 25
27
Thermal Diffusivity, mm2/s 4.0
4.2
Thermal Shock Resistance, points 21 to 22
26

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 21.5 to 24
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 69.3 to 77.3
56.8 to 64.3
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 0 to 0.45
3.0 to 4.0
Nickel (Ni), % 1.0 to 2.9
6.5 to 8.0
Nitrogen (N), % 0.16 to 0.28
0.23 to 0.33
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2