MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. C42500 Brass

EN 1.4104 stainless steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 23
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 400 to 450
220 to 360
Tensile Strength: Ultimate (UTS), MPa 630 to 750
310 to 630
Tensile Strength: Yield (Proof), MPa 350 to 560
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 860
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 30
46
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23 to 27
9.9 to 20
Strength to Weight: Bending, points 21 to 24
12 to 19
Thermal Diffusivity, mm2/s 6.7
36
Thermal Shock Resistance, points 22 to 27
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.1 to 0.17
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 78.8 to 84.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.2 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5